Будущая стоимость денежных средств

Что такое временная стоимость денег

Будущая стоимость денежных средств

Временная стоимость или, как ещё часто говорят, временнаяоценка денег (ударение в слове «временная» здесь ставится на последний слог) –это экономическая концепция учитывающая изменение стоимости денег с течением времени.

Если говорить простыми словами, то суть данной концепции можно выразить одним предложением: одна и та же сумма денег сегодня стоит дороже, чем завтра и в последующие дни (причем, чем больше промежуток времени, тем больше эта самая разница в стоимости).

Объясняется это также довольно просто, как с экономической, так и с чисто психологической точки зрения. С точки зрения человеческой психологии всегда приятнее получить деньги сегодня, нежели завтра, в следующем месяце или через год. А поэтому одна и та же сумма полученная, что называется, сей момент, всегда оценивается дороже.

Ну а с точки зрения экономики, временная стоимость денегобъясняется (и, собственно, оценивается) теми процентами, которые деньги могутпринести за конкретный рассматриваемый промежуток времени.

Взять, к примеру, простой вклад в банк. Если вы положили насвой банковский счёт 100000 рублей, а через год сняли с него уже 108000 рублей,то временная стоимость указанной суммы денег за этот период составила 8000рублей (более корректно будет указать её в процентах – 8% годовых).

В общем и целом из рассматриваемой концепции вытекают дваследующих важных принципа:

  1. В рамках проведения любых финансовых операций (сплатежами, разнесёнными по срокам) следует обязательно учитывать фактор временипри взаиморасчётах;
  2. В плане анализа долгосрочных инвестиций (илифинансовых операций) некорректно суммировать денежные величины, относящиеся кразным моментам времени (без учёта стоимости денег за рассматриваемые периоды).

Как рассчитать временную стоимость денег

Теперь давайте поговорим о том, как, собственно говоря, эту самую пресловутую стоимость рассчитать. Как уже понятно из вышесказанного, временная стоимость денег в численном выражении является не чем иным, как той прибылью, которую можно бы было извлечь из них (например, посредством инвестирования) за рассматриваемый период времени.

То есть в самом простом случае, например при инвестированииденег в облигации с годовой ставкой доходности в 8%, потерянная прибыль за годбудет составлять эти самые 8%.

Другими словами, сумма в 100000 рублей, черезодин год будет оцениваться уже в (100000 + 100000х0,08) = 108000 рублей.

Инаоборот, будущая сумма (через один год) в 100000 рублей, в настоящее времябудет оценена в 100000/1,08 = 92592,59 рублей.

При проведении финансовых операций, все разнесённые вовремени платежи приводят к единому моменту времени (дисконтируют). Такимобразом и учитывается временная стоимость денег.

Принято различать два основных вида стоимости:

  1. Нынешняя стоимость денег (Present value, PV);
  2. Будущая стоимость денег (Future value, FV).

Нынешнюю стоимость денег PV ещё называют дисконтированнойстоимостью. Для приведённого выше примера (100000 рублей и восьмипроцентныхоблигаций), нынешняя стоимость денег равна 100000 рублей, а будущая,соответственно, 108000 рублей.

В общем случае, при проведении финансовых расчётов вседенежные суммы приводятся либо к PV, либо к FV(за заданный промежуток времени) и только после этого их суммируют (илипроводят другие вычисления с ними).

Расчёты величин PV и FV могут проводиться как на основе простого, так и на основесложного процента.

Напомним, что сложным процентом называется начисление прибыли с учётом реинвестирования. То есть, например, прибыль за пять лет при годовой ставке доходности в 5%, будет считаться с учётом того, что каждый год к инвестируемой сумме добавляются 5% прибыли.

В случае расчёта на основе простого процента, формулынынешней и будущей стоимости денег будут иметь вид:

где         R – процентная ставка(годовых);

               T – срок в годах.

При расчёте на основе сложного процента, формулы примут вид:

А, например, для случая аннуитетных платежей со ставкойроста g и ставкой дисконтирования i, нынешнюю стоимость денег (PV) можно рассчитать по формуле:

Что оказывает влияние на временную стоимость денег

Если, что называется, копнуть чуть глубже, то можно сказать,что временная стоимость денег может зависеть как от внутренних, так и отвнешних факторов. К внутренним факторам следует отнести такие, которые зависятглавным образом от того, каким образом происходит распоряжение деньгами стечением времени. А именно:

  1. Уровень доходности (проценты от инвестицийденежных средств);
  2. Уровень риска сопряжённый с вышеупомянутымиинвестициями. Риск может заключаться как в неполучении дохода от инвестиций,так и в прямом убытке от них (вплоть до полного невозврата инвестированныхсредств).

К внешним же факторам относят те, которые не зависят от тогокаким образом управляются деньги, в какие финансовые инструменты ониинвестируются и пр. Самым главным из них является инфляция. Чем выше уровень инфляции,тем больше обесцениваются деньги со временем и, следовательно, тем меньшестановится их будущая стоимость (FV).

Для учёта всех этих факторов существуют сложные формулы,позволяющие максимально точно (насколько это вообще возможно) рассчитатьвременную стоимость денег. Точность таких расчётов во многом ограничена тем,что такие величины как уровень доходности, риск или инфляция берутся исходя изпрогнозируемых значений (а любой прогноз имеет свою степень погрешности).

Мы же не стали вникать в такие премудрости и привели простыеформулы для расчёта текущей (PV)и будущей (FV)стоимости денег на основе предполагаемого уровня доходности по ним (см.предыдущий раздел). Полагаю, что этого вполне достаточно для того, чтобы понятьвсю суть излагаемой здесь теории.

Ну а если сказать ещё проще, то с точки зрения простого трейдераили инвестора, рассматриваемая концепция временной стоимости денег может бытьсведена к аксиоме: Деньги должны делать деньги.

Источник: https://www.AzbukaTreydera.ru/vremennaya-stoimost-deneg.html

Расчет Приведенной (настоящей, текущей) стоимости в MS EXCEL

Будущая стоимость денежных средств

Рассчитаем Приведенную (к текущему моменту) стоимость инвестиции при различных способах начисления процента: по формуле простых процентов, сложных процентов, аннуитете и в случае платежей произвольной величины.

Текущая стоимость (Present Value) рассчитывается на базе концепции стоимости денег во времени: деньги, доступные в настоящее время, стоят больше, чем та же самая сумма в будущем, вследствие их потенциала обеспечить доход.

Расчет Текущей стоимости, также как и Будущей стоимости важен, так как, платежи, осуществленные в различные моменты времени, можно сравнивать лишь после приведения их к одному временному моменту.

Текущая стоимость получается как результат приведения Будущих доходов и расходов к начальному периоду времени и зависит от того, каким методом начисляются проценты: простые проценты , сложные проценты или аннуитет (в файле примера приведено решение задачи для каждого из методов).

Простые проценты

Сущность метода начисления по простым процентам состоит в том, что проценты начисляются в течение всего срока инвестиции на одну и ту же сумму (проценты начисленные  за предыдущие периоды, не капитализируются, т.е. на них проценты в последующих периодах не начисляются).

В MS EXCEL для обозначения Приведенной стоимости используется аббревиатура ПС (ПС фигурирует как аргумент в многочисленных финансовых функциях MS EXCEL).

Примечание . В MS EXCEL нет отдельной функции для расчета Приведенной стоимости по методу Простых процентов.

Функция ПС() используется для расчета в случае сложных процентов и аннуитета.

Хотя, указав в качестве аргумента Кпер значение 1, а в качестве ставки указать i*n, то можно заставить ПС() рассчитать Приведенную стоимость и по методу простых процентов (см. файл примера ).

Для определения Приведенной стоимости при начислении простых процентов воспользуемся формулой для расчета Будущей стоимости (FV): FV = PV * (1+i*n) где PV — Приведенная стоимость (сумма, которая инвестируется в настоящий момент и на которую начисляется процент); i — процентная ставка за период начисления процентов (например, если проценты начисляются раз в год, то годовая; если проценты начисляются ежемесячно, то за месяц); n – количество периодов времени, в течение которых начисляются проценты.

Из этой формулы получим, что:

PV = FV / (1+i*n)

Таким образом, процедура расчета Приведенной стоимости противоположна вычислению Будущей стоимости. Иными словами, с ее помощью мы можем выяснить, какую сумму нам необходимо вложить сегодня для того, чтобы получить определенную сумму в будущем.

Например, мы хотим знать, на какую сумму нам сегодня нужно открыть вклад, чтобы накопить через 3 года сумму 100 000р. Пусть в банке действует ставка по вкладам 15% годовых, а процент начисляется только основную сумму вклада (простые проценты).

Для того чтобы найти ответ на этот вопрос, нам необходимо рассчитать Приведенную стоимость этой будущей суммы по формуле PV = FV / (1+i*n) = 100000 / (1+0,15*3) = 68 965,52р. Мы получили, что сегодняшняя (текущая, настоящая) сумма 68 965,52р.

эквивалентна сумме через 3 года в размере 100 000,00р. (при действующей ставке 15% и начислении по методу простых процентов).

Конечно, метод Приведенной стоимости не учитывает инфляции, рисков банкротства банка и пр. Этот метод эффективно работает для сравнения сумм «при прочих равных условиях».

Например, что с помощью него можно ответить на вопрос «Какое предложение банка выгоднее принять, чтобы получить через 3 года максимальную сумму: открыть вклад с простыми процентами по ставке 15% или со сложными процентами с ежемесячной капитализацией по ставке 12% годовых»? Чтобы ответить на этот вопрос рассмотрим расчет Приведенной стоимости при начислении сложных процентов.

Сложные проценты

При использовании сложных ставок процентов процентные деньги, начисленные после каждого периода начисления, присоединяются к сумме долга.

Таким образом, база для начисления сложных процентов в отличие от использования простых процентов изменяется в каждом периоде начисления.

Присоединение начисленных процентов к сумме, которая послужила базой для их начисления, называется капитализацией процентов. Иногда этот метод называют «процент на процент».

Приведенную стоимость PV (или ПС) в этом случае можно рассчитать, используя формулу наращения для сложных процентов .

FV = РV*(1+i)n где FV (или S) – будущая (или наращенная сумма), i — годовая ставка, n — срок ссуды в годах,

т.е. PV = FV / (1+i)n

При капитализации m раз в год формула Приведенной стоимости выглядит так: PV = FV / (1+i/m)(n*m) i/m – это ставка за период.

Например, сумма 100 000р. на расчетном счету через 3 года эквивалентна сегодняшней сумме 69 892,49р. при действующей процентной ставке 12% (начисление % ежемесячное; пополнения нет). Результат получен по формуле =100000 / (1+12%/12)(3*12) или по формуле =ПС(12%/12;3*12;0;-100000).

Отвечая на вопрос из предыдущего раздела «Какое предложение банка выгоднее принять, чтобы получить через 3 года максимальную сумму: открыть вклад с простыми процентами по ставке 15% или со сложными процентами с ежемесячной капитализацией по ставке 12% годовых»? нам нужно сравнить две Приведенные стоимости: 69 892,49р. (сложные проценты) и 68 965,52р. (простые проценты). Т.к. Приведенная стоимость, рассчитанная по предложению банка для вклада с простыми процентами, меньше, то это предложение выгоднее (сегодня нужно вложить денег меньше, чтобы через 3 года получить ту же сумму 100 000,00р.)

Сложные проценты (несколько сумм)

Определим приведенную стоимость нескольких сумм, которые принадлежат разным периодам. Это можно сделать с помощью функции ПС() или альтернативной формулы PV = FV / (1+i)n

Установив значение ставки дисконтирования равной 0%, получим просто сумму денежных потоков (см. файл примера ).

Аннуитет

Если, помимо начальной инвестиции, через равные периоды времени производятся дополнительные равновеликие платежи (дополнительные инвестиции), то расчет Приведенной стоимости существенно усложняется (см. статью Аннуитет. Определяем в MS EXCEL Приведенную (Текущую) стоимость , где приведен расчет с помощью функции ПС() , а также вывод альтернативной формулы).

Здесь разберем другую задачу (см. файл примера ):

Клиент открыл вклад на срок 1 год под ставку 12% годовых с ежемесячным начислением процентов в конце месяца. Клиент также в конце каждого месяца вносит дополнительные взносы в размере 20000р. Стоимость вклада в конце срока достигла 1000000р. Какова первоначальная сумма вклада?

Решение может быть найдено с помощью функции ПС() : =ПС(12%/12;12;20000;-1000000;0) = 662 347,68р.

Аргумент Ставка указан за период начисления процентов (и, соответственно, дополнительных взносов), т.е. за месяц. Аргумент Кпер – это количество периодов, т.е. 12 (месяцев), т.к. клиент открыл вклад на 1 год. Аргумент Плт — это 20000р., т.е. величина дополнительных взносов. Аргумент Бс — это -1000000р., т.е. будущая стоимость вклада.

Знак минус указывает на направление денежных потоков: дополнительные взносы и первоначальная сумма вклада одного знака, т.к. клиент перечисляет эти средства банку, а будущую сумму вклада клиент получит от банка. Это очень важное замечание касается всех функций аннуитета , т.к.

в противном случае можно получить некорректный результат. Результат функции ПС() – это первоначальная сумма вклада, она не включает Приведенную стоимость всех дополнительных взносов по 20000р. В этом можно убедиться подсчитав Приведенную стоимость дополнительных взносов. Всего дополнительных взносов было 12, общая сумма 20000р.*12=240000р.

Понятно, что при действующей ставке 12% их Приведенная стоимость будет меньше =ПС(12%/12;12;20000) = -225 101,55р. (с точностью до знака). Т.к. эти 12 платежей, сделанные в разные периоды времени, эквивалентны 225 101,55р. на момент открытия вклада, то их можно прибавить к рассчитанной нами первоначальной сумме вклада 662 347,68р.

и подсчитать их общую Будущую стоимость = БС(12%/12;12;; 225 101,55+662 347,68) = -1000000,0р., что и требовалось доказать.

Определение Приведенной стоимости в случае платежей произвольной величины

Если денежные потоки представлены в виде платежей произвольной величины, осуществляемые через равные промежутки времени, то для нахождения Текущей (приведенной) стоимости по методу сложных процентов используется функция ЧПС() .

Если денежные потоки представлены в виде платежей произвольной величины, осуществляемых за любые промежутки времени, то используется функция ЧИСТНЗ() .

Об этих расчетах читайте в статье Чистая приведенная стоимость NPV (ЧПС) и внутренняя ставка доходности IRR (ВСД) в MS EXCEL .

Источник: https://excel2.ru/articles/raschet-privedennoy-nastoyashchey-tekushchey-stoimosti-v-ms-excel

Будущая стоимость. Как рассчитать будущую стоимость инвестиций – SPRINTinvest.RU

Будущая стоимость денежных средств

Будущая стоимость инвестиций – это сумма, до которой возрастет первоначальный вклад с учетом капитализации на основе сложных процентов, в течение периода хранения средств на счете.

Расчет будущей стоимости инвестиций осуществляется с использованием стандартных формул.

Чтобы их усвоить, достаточно попрактиковаться на простом примере.

Допустим, у нас имеется вклад в размере 1000 долл. под 7% годовых. Будущая стоимость инвестиций в данном случае может быть рассчитана по следующей формуле:

Будущая стоимость на конец 1-го периода = 1000 долл. * (1 + 0,07) = 1070 долл.

В случае продления срока действия вклада на тех же условиях еще на год будущую стоимость вклада следует рассчитывать по той же формуле с учетом полученного результата:

Будущая стоимость на конец 2-го периода = 1070 долл. * (1 + 0,07) = 1144,9 долл.

Понятно, что этот процесс может быть продолжен сколь угодно долго.

Формула расчета будущей стоимости инвестиций

Было бы удобно, не производя промежуточных расчетов, сразу получать значения будущей стоимости денег (инвестиций) на некоторый период времени, располагая данными о [1] размере первоначального вклада и [2] размере процентной ставки.

Для этого выведем общую формулу.

Для сокращения записи обозначим будущую стоимость инвестиций на конец n-го периода буквой Sn, размер первоначального вклада – буквой N, размер процентной ставки – k.

Тогда наша формула примет вид:

Sn = N*(1+k/100)n.

В частности, будущая стоимость инвестиций на конец 2-го периода с учетом наших первоначальных данных будет рассчитана по формуле 1000 долл. * (1+7/100)2 = 1000 долл. * 1,1449 = 1144,9 долл., что соответствует полученному нами ранее результату.

Таблица расчета будущей стоимости инвестиций

На практике производить вручную приведенные выше расчеты бывает крайне утомительным.

Рассчитать будущую стоимость инвестиций на конец хотя бы 10-го периода способны разве что истинные фанаты счетного дела.

Попробуйте, к примеру, возвести в 10-ю степень число 1,07; лично я сразу начинаю искать калькулятор или что-то в этом роде…

До изобретения калькуляторов и компьютеров широко использовались таблицы с уже готовыми результатами.

На практике такие таблицы могут оказаться очень удобными в использовании.

Чтобы было понятно, о чем идет речь, предлагаю взглянуть на таблицу ниже:

Таблица содержит коэффициенты для 1 долл. (значения коэффициентов округлены до 3-го знака после запятой).

В частности, по истечению 2-го периода (года) при 7-процентной ставке размер вклада составит 1,145 долл. Если первоначальная сумма вклада составляла 1000 долл., то для расчета будущей стоимости вклада нужно его первоначальный размер умножить на соответствующий коэффициент из таблицы (1000 долл. * 1,145 = 1145 долл.).

Будущая стоимость инвестиций: важные закономерности

Внимательно присмотревшись к таблице, можно сделать несколько основополагающих выводов относительно формирования будущей стоимости инвестиций.

Во-первых, чем выше процентная ставка по вкладу, тем выше размер будущей стоимости.

Во-вторых, для каждой процентной ставки характерно увеличение размера будущей стоимости инвестиций с течением времени.

Наконец, в-третьих, коэффициент наращения будущей стоимости, как правило, всегда больше 1; он может быть равен 1 лишь в случае, когда процентная ставка равна 0.

В таком случае будущая стоимость инвестиций оказывается равной первоначальному вкладу, что случается, например, когда, вы просто одалживаете деньги на некоторый срок своим знакомым без взимания процентов за пользование одолженными средствами.

Конечно, использование таблиц не лишено недостатков.

Их расширение может представлять определенные трудности.

Если нам понадобится узнать размер капитала через 100 периодов, потребуется довольно обширная таблица, пользование которой окажется не таким уж простым делом.

На сегодняшний момент оптимальным следует признать использование так называемых инвестиционных калькуляторов, позволяющих в режиме онлайн производить соответствующие расчеты и мгновенно получать интересующие нас результаты.

Резюме

Сегодняшняя статья не охватывает всех аспектов, касающихся описания концепции сложных процентов и концепции будущей стоимости, а также связанных с этими концепциями расчетов.

Существует ряд формул, позволяющих рассчитывать будущую стоимость аннуитета (потока равных сумм денежных средств), приведенной стоимости, которые будет полезно усвоить каждому вдумчивому инвестору.

Но обо всем об этом мы поговорим в другой раз. Так что до скорой встречи и удачных инвестиций!

Источник: https://sprintinvest.ru/budushhaya-stoimost-kak-rasschitat-budushhuyu-stoimost-investicij

Настоящая и будущая стоимость денег

Будущая стоимость денежных средств

При подходе к деньгам простой арифметический и, вроде как бы логический подход, не всегда работает. Казалось бы, если один равен одному, то и один рубль равен одному рублю всегда и везде. Это правильно, но только тогда, когда речь идет не о времени.

Концепция

Стоимость денег во времени связана с тем, что до тех пор, пока существуют альтернативные и разнообразные возможности получения дохода, стоимость денег всегда будет зависеть от того момента времени, когда предполагается их получение.

Поскольку существует возможность получения процентов на имеющиеся денежные средства, постольку, чем скорее поступает доход от финансового инструмента или бизнеса, тем лучше.

Здесь под «скорее», также имеется в виду и чаще, то есть чем скорее и/или с большей периодичностью поступает доход, тем лучше.

Поэтому при принятии любых инвестиционных решений постоянно следует учитывать концепцию изменения стоимости денег с течением времени, или будущую стоимость денег. По сути, эта концепция предполагает приведение к «общему знаменателю» денежных средств, разнесенных во времени.

Инфляция

Любая экономика мира подвержена инфляционным процессам, заключающимся в постоянном повышении цен на товары и услуги.

Размеры инфляции могут быть катастрофичными, как, например, в Венесуэле или Сомали, да и в России в начале 90-х годов, но также и умеренными, и достаточно комфортными для народного хозяйства.

То есть цены постоянно и неуклонно растут, поэтому на один рубль сегодня можно купить, пусть на чуть-чуть, но больше, чем на тот же рубль завтра.

Таким образом, к концепции изменения стоимости денег во времени можно подходить с двух разных сторон. С одной стороны, сегодняшние деньги могут быть инвестированы под проценты и дать доход. То есть происходит наращивание упущенной выгоды.

С другой стороны, лежащие без движения денежные средства, постоянно теряют свою ценность, выраженную в количестве товаров и услуг, которые на эти деньги можно приобрести. В обоих вариантах ключевым вопросом становится определение будущей стоимости денег, имеющихся сейчас в наличии.

Это актуально, как для бизнеса, так и для физического лица.

Простые и сложные проценты

Вложение денег в различные финансовые инструменты осуществляется под проценты, процентами же измеряется также и доходность любого бизнеса. Существует два общепринятых способа начисления процентов на инвестированную сумму. Простые проценты, как следует из их названия, вычисляются очень просто.

Обычно речь идет о годовых процентах. Сумму дохода за год можно определить, взяв объявленный процент доходности за год от инвестированной суммы. Простые проценты начисляются по сберегательным сертификатам, купонным доходам облигаций, по отдельным видам банковских вкладов и в ряде других случаев.

Отличие сложных процентов от простых заключается в частоте начисления процентов и постоянном изменении суммы, на которую эти проценты начисляются.

Если для определения дохода по простым процентам достаточно знать значение годового процента и период вложения, то для сложных процентов к этому добавляется периодичность выплат, а также факт капитализации, то есть присовокупление полученных процентов к основной сумме вложений.

Расчет сложных процентов ведется по формуле, предусматривающей возведение в степень процентной ставки количеством начислений за весь период инвестирования. Именно по сложным процентам ведутся основные расчеты по оценке эффективности того, или иного вложения денег.

Будущая стоимость денег – это ничто иное, как сумма, до которой возрастут текущие инвестиции за период с их вложения с начислением сложных процентов до конца срока вложения. Иногда это называется «наращенной стоимостью». Формула будущей стоимости денег полностью идентична формуле для расчета сложных процентов:

FV = PV * (1+ E)ⁿ

FV (future value) – будущая стоимость денег;

PV (present value) – настоящая стоимость денег;

Е – процентная ставка за один период начисления;

N — количество периодов начислений.

Поскольку здесь речь идет не о вкладе в конкретный банк, где ставка процента жестко определена этим банком, а об определении будущей стоимости имеющихся денежных средств, крайне важным является вопрос об определении ставки процента. Существует много подходов к решению этого вопроса. К основным из них можно отнести:

— средняя ставка банковского процента по определенному региону, сложившаяся на рынке к моменту вложения денег;

— учетная ставка Центрального банка страны;

— зафиксированный уровень инфляции, либо по товарам народного потребления, либо по ценам промышленности, в зависимости от объекта;

— прогнозные ставки инфляции, утверждаемые Минэкономразвития;

— ставки ЛИБОР, увеличенные на страновой риск, когда расчеты делаются для иностранных партнеров.

При проведении экономического расчета будущей стоимости денег, зачастую, выбор ставки занимает гораздо больше времени, чем обсуждение прогнозного денежного потока.

Дисконтирование

Процесс определения будущей стоимости денег связан с обратной задачей – определение настоящей стоимости денег, то есть процессом дисконтирования. Совершенно очевидно, что в данном случае указанная формула просто преобразуется по математическим правилам, а именно:

PV = FV / (1+ E)ⁿ

Задача дисконтирования возникает, когда нужно оценить будущее поступление денежных средств в текущем моменте, что практически всегда бывает необходимо при подготовке бизнес-планов и других экономических расчетов.

Аннуитет

Несмотря на наукообразное название, понятие аннуитета – это всего лишь обозначение потока равных сумм денежных средств, возникающих через равные промежутки времени. Данное явление встречается очень часто. Можно привести общеизвестные примеры.

Получение заработной платы, периодические платежи за услуги ЖКХ, оплата мобильного телефона по безлимитному тарифу, периодические взносы на сберегательный счет и так далее. Денежные потоки могут быть притоками дохода, полученными от инвестирования, или оттоками средств, инвестируемых с целью получения будущих доходов.

В технико-экономических обоснованиях практически любого проекта аннуитет встречается всегда.

Будущая стоимость аннуитета

Расчет будущей или настоящей стоимости денег в аннуитете мало отличается от уже описанного расчета сложных процентов. Просто для каждого промежуточного периода, кроме процентов, добавляется еще и периодический взнос, и уже на эту сумму начисляется процент для следующего периода. Существует формула для расчета, выглядит она несколько сложно:

FV = PV *( (1+ E)ⁿ-1) / E

На практике эта формула неудобна, обычно пользуются либо таблицами с факторами наращения для аннуитета в одну денежную единицу, либо, что происходит чаще, встроенными формулами в приложении EXCEL.

Пример такой таблицы приведен ниже:

Данные в приведенной таблице представляют собой множители для определения будущей стоимости денег в аннуитете. Соответственно, когда необходимо определить настоящую стоимость денег, то есть провести дисконтирование аннуитета, эти множители становятся знаменателями соответствующих сумм денежного потока.

Приведенная стоимость смешанного потока доходов

Смешанный поток доходов, в реальности встречается гораздо чаще, чем классический аннуитет. Стоимость денег в этом потоке определяется, что называется «вручную». Для этого должны быть найдены, а затем суммированы приведенные стоимости всех доходов.

практическая польза от всех указанных расчетов заключается в получении возможности сравнивать различные варианты инвестирования.

При этом необходимым условием любого вложения денег является превышение всех дисконтированных доходов, над всеми дисконтированными расходами для извлечения этих доходов.

Источник: https://FB.ru/article/438346/nastoyaschaya-i-buduschaya-stoimost-deneg

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.